

Check and adjustment of clearance between steering knuckle and axle

Keep the steering knuckle (3) raised and use a thickness gauge (1) to check clearance between the upper shim adjustment of the steering knuckle and the axle (2). This value must be between 0.10 and 0.35 mm.

Once the clearance between the upper shim adjustment of the steering knuckle (1) and the axle (3) has been checked, use a thickness gauge (2) to check that between the lower shim adjustment of the steering knuckle (1) and the axle's (3) one there is a gap not lower than 0.25 mm.

The possible clearance adjustment can be done replacing the adjusting shims (1, Figure 60) with spare ones having the right thickness.

As to the thickness of spare rings, see table "SPECIFICATIONS AND DATA".

Lubricate the whole lower and upper articulated joint with grease MR2, checking that the grease flows through the gasket baffle.

Place the brake callipers support (1) on the steering knuckle (3) and clamp lock screws (2) according to the prescribed torque.

Complete wheel hub assembly as described on page 27.

520618 CHECKS AND MEASUREMENTS OF THE AXLE UNIT

Place two bars (1) fitted with cones (3) in the steering knuckle pin holes. Push the cones and clamp them placing the appropriate screws on the bars.

Introduce two centring dowels (2) in the leaf spring supporting plane (4).

NOTE Before placing the bases with the goniometers, check that the supporting planes are not painted or irregular.

Place the sliding bar (2) on the goniometer's bars (4), adjusting its length so that the shaped edges touch the bars (1).

Clamp the screws of the stop block (7) and the goniometer's lock screws (3) to the bars (4).

52	06 Front axles 5842/5 - 5851/5	Page
DES	SCRIPTION	39
	Characteristic angles	41
SPE	CIFICATIONS AND DATA	43
DIA	GNOSTICS	45
TIG	HTENING TORQUES	48
ТО	OLS	49
FRC (DNT AXLE REMOVAL - REFITTING Mechanical suspension)	53
	Removal	53
	Refitting	53
FRC (ONT AXLE REMOVAL - REFITTING Pneumatic suspension)	54
	Removal	54
	Refitting	54
FRC	DNT WHEEL SET UP	55
	Setting of clips and headlights	55
	Electronic compensation for rim maladjustment	56
	Wheel alignment	56
	Toe-in check	57
	Check of wheel inclination (Camber)	57
	Check upright angle of inclination (King Pin) and clearance angle (Caster)	57
	Check steering angles	58
0V /	ERHAUL OF THE FRONT XLE ASSY	59
	Removal and refitting of wheel hubs	59
	Sealing ring replacement	59
_		

End play adjustment of wheel hub bearings	60
Rolling torque check	60
REPLACEMENT OF WHEEL HUB BEARINGS .	61
REPLACEMENT OF STUD BOLTS FOR WHEEL CLAMPING	62
CROSS TIE ROD REMOVAL AND REFITTING	62
REPLACEMENT OF CROSS TIE ROD ARTICULATED JOINTS	63
CROSS TIE ROD LEVER REMOVAL AND REFITTING	63
LONGITUDINAL TIE ROD LEVER REMOVAL AND REFITTING	63
STEERING KNUCKLE PIN REMOVAL AND REFITTING	63
Removal	63
Refitting	64
Check and adjustment of clearance between steering knuckle and axle	65
STEERING KNUCKLE PIN BEARING REPLACEMENT	66
CHECKS AND MEASUREMENTS OF THE AXLE UNIT	67
Check flatness of leaf spring surfaces compared to holes for steering knuckle pins	67
Check hole inclination for steering knuckle pins	68

DESCRIPTION

The front axle has a steel structure with a double "T" section having at the end steering knuckles.

The steering knuckles' connection is made through pins integral with the axle body and by means of four roller bearings set with interference in the holes of the steering knuckles' embossing.

The wheel hubs are supported by two conical roller bearings set on the steering knuckle shank and adjustable by a threaded ring.

Figure I

SECTION OF FRONT AXLE 5842/5 (F 5021) WHEEL SIDE

73841

Characteristic angles

In order to have a good roadholding, a low tyre wear and to enable driving wheels to recover an upright direction after steering, it is necessary to set the wheels according to certain assembly angles:

- wheel angle of inclination
- upright angle of inclination
- clearance angle
- 🗋 toe-in

Such angles, when correctly calculated, enable the vehicle to maintain the right balance among the various forces involved in its movement, in different loading conditions, which tend to alter the wheel position on the ground.

Wheel angle of inclination

The wheel angle (α) of inclination is the one resulting from the axis passing through the wheel's centre line and the vertical to the ground, looking at the vehicle standing before it.

The inclination is positive (A) when the wheel's upper part moves outside. It is negative (B) when the wheel's upper part moves inside.

The upright angle (β) of inclination is the one resulting from the axis passing through the upright and the vertical to the ground, looking at the vehicle standing before it.

When the extension of the upright axis approaches the wheel when it is touching the ground (opposite direction compared to the wheel's inclination), the angle is positive. It is difficult, if not impossible, to have a negative upright angle of inclination.

The wheel angle (α) of inclination and the upright angle (β) of inclination enable the wheel axis and the upright axis to get closer to the tyre's fulcrum on the ground as much as possible.

As a result, it is possible to reduce the tyre wear and to get a low value of the steering torque.

Clearance angle

The clearance angle (γ) is the one resulting from the upright axis and the vertical to the ground, looking at the vehicle from one side.

If the extension of the upright axis falls beyond the wheel's fulcrum on the ground in the vehicle's direction, as a rule the clearance angle is positive (A). It is considered negative (B) if it falls behind the wheel's fulcrum on the ground. It is null if it is absolutely perpendicular to the wheel's fulcrum on the ground.

Such an angle enables front wheels to keep an upright position when the vehicle is moving in an upright direction and to recover such a position after taking a curve as soon as the steering wheel is released by the driver.

Toe-in results from the difference between distance A and B (value expressed in mm) measured on the rims' horizontal axis, looking at the vehicle from above.

In this way it is possible to drive easily and to reduce the tyre wear.

Toe-in is positive if B is bigger than A.

Toe-in is negative if B is lower than A.

Toe-in is zero if B corresponds to A.